NEN STANDARD ACADEMY Test Type : Unit Test - 02

Do not open this Test Booklet until you are asked to do so.

PRE-MEDICAL :12"Undergoing/Pass Students

Read carefully the Instructions on the Back Cover of this Test Booklet.

Important Instructions :

1. On the answer sheet, fill in the particulars on Side-1 and Side -2 carefully with blue/black ball point pen only.
2. The test The test is of 3 hours 20 minutes duration and this Test Booklet contains 200 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
3. In this Test Paper, each subject will consist of two sections. Section A will consist of 35 questions (all questions are mandatory) and Section B will have15 questions. Candidate can choose to attempt any 10 question out of these 15 questions. In case if candidate attempts more than 10 questions, first 10 attempted questions will be considered for marking
4. In case of more than one option correct in any question, the best correct option will be considered as answer.
5. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
6. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
7. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
8. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Form No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
9. Use of white fluid for correction is not permissible on the Answer Sheet.

Name of the Candidate(In Capitals) \qquad
Date of Examintation

Topic: Kinematics, Current Electricity and

 Heating Effects of Current
SECTION - A (PHYSICS)

1. A particle covers each $\frac{1}{4}$ of the total distance with V_{b}, V_{2}, V_{3} and V_{4} respectively. Find the average speed.
(1) $\frac{V_{1} V_{2} V_{3} V_{4}}{V_{1}+V_{2}+V_{3}+V_{4}}$
(2) $\frac{V_{1}+V_{2}+V_{3}+V_{4}}{4}$
(3) $\frac{V_{1} V_{2} V_{3} V_{4}}{\left(V_{1}+V_{2}+V_{3}+V_{4}\right) 4}$
(4) $\frac{4 V_{1} V_{2} V_{3} V_{4}}{V_{2} V_{3} V_{4}+V_{1} V_{3} V_{4}+V_{1} V_{2} V_{4}+V_{1} V_{2} V_{3}}$
2. The initial velocity of a body is U and the ac celeration is $f=2 t^{2}+3 t+4 \mathrm{~m} / \mathrm{s}^{2}$ then
(1) $V=\frac{2 \mathfrak{t}^{3}}{3}+\frac{3 t^{2}}{2}+U$
(2) $\mathrm{V}=\frac{2 \mathrm{t}^{3}}{3}+\frac{3 \mathrm{t}^{2}}{2}+(4+\mathrm{U}) \mathrm{t}$
(3) $V=\frac{2 t^{3}}{3}+\frac{3 t^{2}}{2}+4 t+U$
(4) $\mathrm{V}=\frac{3 \mathrm{t}^{3}}{2}+\frac{2 \mathrm{t}^{2}}{3}+4 \mathrm{t}+\mathrm{U}$
3. Mark the correct statements for a particle going on a straight line -
(x - position coord inate, v - velocity, a - acceleration)
(1) If x and v have opposite sign, particle moving towards origin
(2) If x and v have same sign particle moving towards origin
(3) If v and a have opposite sign, object is spee ding up
(4) If v is zero then a is also zero for that particular moment
4. A particle moves along X -axis and its position
$\mathrm{x}=\mathrm{U}(\mathrm{t}-4)+2 \mathrm{a}(\mathrm{t}-4)^{2}$
$t \rightarrow$ time
(A) The initial velocity (at $\mathrm{t}=0$) is U
(B) The acceleration is 4 a
(C) The a cceleration is 2 a
(D) At $=4$ second, particle is at origin following statements are correct.
(1) A, B
(2) B, C
(3) B, D
(4) A, D
5. A projectile is thrown with velocity v making an angle θ with the horizontal It just crosses the top of two poles, each of height h , after 1 sec and 5 sec respectively The time of flight is
(1) 1 sec
(2) 6 sec
(3) 4 sec
(4) 7 sec
6. A police van moving with $36 \mathrm{~km} / \mathrm{h}$ fires a bullet at a thief's car spee ding away in the same direction with a speed of $180 \mathrm{~km} / \mathrm{h}$. If the muzzle speed of the bullet is $150 \mathrm{~m} / \mathrm{s}$, with what speed does the bullet hit the thiefs car-
(1) $110 \mathrm{~m} / \mathrm{s}$
(2) $216 \mathrm{~km} / \mathrm{h}$
(3) $110 \mathrm{~km} / \mathrm{h}$
(4) $186 \mathrm{~m} / \mathrm{s}$
7. A projectile is projected at an angle $\alpha\left(>45^{\circ}\right)$ from horizontal with an initial velocity u The time (t) at which its horizontal component will equal the vertical component in its magnitude
(1) $\frac{\mathrm{u}}{\mathrm{g}}\left[\sin ^{2} \alpha-\cos ^{2} \alpha\right]$
(2) $\frac{\mathrm{u}}{\mathrm{g}}\left[\cos ^{2} \alpha-\sin ^{2} \alpha\right]$
(3) $\frac{\mathrm{u}}{\mathrm{g}}[\sin \alpha-\cos \alpha]$
(4) $\frac{\mathrm{u}}{\mathrm{g}}[\cos \alpha-\sin \alpha]$
8. Particles are projected from the top of a tower with same speed at different angles as shown Which of the following are true

(1) All the particles would strike the ground with same speed
(2) All particle strike the ground at the same time
(3) All partick strike the ground with different sped
(4) All partic le strike the ground with different kinet ic energy
9. A river is flow ing from west to east at a speed of $10 \mathrm{~m} / \mathrm{min}$. A man on south bank of river, capable of swimming at $20 \mathrm{~m} / \mathrm{min}$ in still water wants to cross the river through the shortest path, in what direction should he swim :-
(1) 30° West of north
(2) 30° East of north
(3) 30° West of south
(4) 30° East of south
10. Raindrops are falling vertically with a velocity of $20 \mathrm{~km} / \mathrm{h}$. To a person moving on level ground, raindrops appears to be coming with $40 \mathrm{~km} / \mathrm{h}$, the velocity of person is-
(1) $10 \sqrt{5} \mathrm{~km} / \mathrm{h}$
(2) $10 \sqrt{8} \mathrm{~km} / \mathrm{h}$
(3) $10 \sqrt{12} \mathrm{~km} / \mathrm{h}$
(4) $10 \sqrt{20} \mathrm{~km} / \mathrm{h}$
11. An arrow is shot in air, its time of flight is 5 sec . and horizontal Range is 200 m . The projection angle of the arrow with the horizontal is -
(1) $\tan ^{-1} \frac{5}{8}$
(2) $\tan ^{-1} \frac{1}{8}(3)$
3) $\tan ^{-1} \frac{8}{5}$
4) 45°
12. A body falls freely from rest under gravity. It covers as much distance in the last second of its motion as covered in the first three seconds. The body has fallen for a time of
(1) 3 sec .
(2) 5 sec .
(3) 7 sec .
(4) 9 sec .
13. Assertion (A) - Two balls of different masses are thrown vertically upward with same speed. They will pass through their point of projection in the downward direction with the same speed.
Reason (R) - Downward velocity attained at the point of projection are independent of the mass of the ball.
(1) Assertion (A) is correct, reason (R) is correct and Reason(R) is correct explaination for assertion.
(2) Assertion (A) is correct, reason (R) is correct and Reason (R) is not correct exp laination for assertion.
(3) Assertion (A) is correct, Reason (R) is incorrect
(4) Assertion (A) is incorrect, Reason (R) is correct
14. For a particle acceleration-time graph is given. The corresponding velocity-time curve is (initial velocity $=0$)
(1)

(2)

(3)

(4)

15. A stone is thrown vertically upward with an initial speed u from the top a tower, reaches the ground with a speed $4 u$, the height of the tower is :
(1) $7.5 \frac{\mathrm{u}^{2}}{\mathrm{~g}}$
(2) $7 \frac{u^{2}}{g}$
(3) $6.5 \frac{\mathrm{u}^{2}}{\mathrm{~g}}$
(4) $6 \frac{u^{2}}{g}$
16. Two particles held at different height 8 m and 12 m above the ground are allowed to fall from rest. The ratio of their speeds on reaching the ground is:
(1) $\sqrt{\frac{3}{2}}$
(2) $\frac{2}{\sqrt{6}}$
(3) $\frac{2}{3}$
(4) $\frac{4}{9}$
17. A balloon is moving upward with velocity $20 \mathrm{~m} / \mathrm{s}$. It release a stone which comes down to the ground in 15 sec . The height of the balloon from the ground at the moment when thestone was dropped is
(1) 620 m
(2) 825 m
(3) 1035 m
(4) 1215 m
18. An α-particle revoles in a circular path of radius one meter with velocity $3.14 \mathrm{~m} / \mathrm{sec}$ then the current associated with the motion of particle is :-
(1) $6.4 \times 10^{-19} \mathrm{~A}$
(2) $4.8 \times 10^{-19} \mathrm{~A}$
(3) $3.2 \times 10^{-19} \mathrm{~A}$
(4) $1.6 \times 10^{-19} \mathrm{~A}$
19. Ratio of area of three wires, made of same material and same length is $1: 2: 3$ then the ratio of resistances of wires is -
(1) $1: 2: 3$
(2) $2 \quad 3: 4$
(3) $6: 3: 2$
(4) $3 \quad 4: 5$
20. Assertion :- The drift velocity of electron in a metallic wire will decrease, if the temperature of the wire is increased
Reason :- On increa sing temp., relaxation time of el ectrons of metal lic wire decreases
(1) Both Assertion \& Reason are True \& the Reason is a correct explanation of the Assertion
(2) Both Assertion \& Reason are True but Reason is not a correct explanation of the Assertion
(3) Assertion is True but the Reason is False.
(4) Both Assertion \& Reason are False.
21. Assertion :- The range of voltmeter can be changed. Reason :- By adjusting the value of resistance in series with galvanometer, the range of voltmeter can be adjusted.
(1) Both Assertion \& Reason are True \& the Reason is a correct explanation of the Assertion.
(2) Both Assertion \& Reason are True but Reason is not a correct explanation of the Assertion.
(3) Assertion is True but the Reason is False.
(4) Both Assertion \& Reason are False.
22. In the following circuit, emf is 2 V and internal resistance of cell is 1Ω and $\mathrm{R}=3 \Omega$ then reading of ammeter and voltmeter are respectively :

(1) $\frac{1}{2} \mathrm{~A}, \frac{3}{2} \mathrm{~V}$
(2) $1 \mathrm{~A}, 3 \mathrm{~V}$
(3) $2 \mathrm{~A}, 4 \mathrm{~V}$
(4) $3 \mathrm{~A}, 3 \mathrm{~V}$
23. A student has 10 wires each of 20Ω then which one resistance can not be obtained with the combination of these wires.
(1) 1Ω
(2) 170Ω
(3) 18Ω
(4) 50Ω
24. As the switch S is closed in the circuit in figure current passing through it is approximately -

(1) 4.5 A
(2) 6.0 A
(3) 3.0 A
(4) Zero
25. Read care fully the following

The internal resistance of two cells shown are 0.1Ω and 0.3Ω. If $\mathrm{R}=0.2 \Omega$ then

Statement I : Current in the circuit is 20/3 A.
Statement II : Terminal potential difference of cell A is $4 / 3$ volt.
(1) State ment-I a nd statement-II both are true
(2) State ment-I is true and statement-II is false
(3) State ment-I is false and stateme nt-II is true
(4) State $m_{e} n_{t}-I$ a n_{d} state $m_{e} n_{t}-I I$ both are $f_{a} l_{s e}$
26. Statement I: When a cell is short circuited then Terminal potential difference of cell is zero.
Statement II : Slope of curve drawn between Terminal potential difference of discharging and current is equal to internal resistance (in magnit ude)
(1) State ment-I a nd statement-II both are true
(2) State ment-I is true and statement-II is false
(3) Statement-I is false and statement-II is true
(4) State ment-I a nd statement-II both are false
27. In the given fig, the power loss in load resistance R cannot be :

(1) 2 W
(2) 3 W
(3) 6 W
(4) 9 W
28. For the given combination of cells, effective emf is

(1) $\frac{26}{7}$ volt
(2) $\frac{10}{5}$ volt
(3) $\frac{7}{9}$ volt
(4) $\frac{2}{3}$ volt
29. In which resistance, power loss is minimum

(1) 5Ω
(2) 30Ω
(3) 20Ω
(4) 10Ω
30. In the given figure, the total power loss is -

(1) 100 W
(2) 200 W
(3) 150 W
(4) 50 W
31. In the given fig. current i_{1}, i_{2} and i_{3} in (A) are -

(1) $3,2,6$
(2) $6,2,3$
(3) $2,3,6$
(4) $6,3,2$
32. Current i in the give nc ircuit is -

(1) 10 A
(2) $\frac{10}{3} \mathrm{~A}$
(3) $\frac{10}{9} \mathrm{~A}$
(4) zero
33. The current in resistance 3Ω in the given fig is -

(1) 1 A
(2) $\frac{2}{3} \mathrm{~A}$
(3) $\frac{1}{4} \mathrm{~A}$
(4) $\frac{1}{2} \mathrm{~A}$
34. How can a galvanometer of range 20 mV and resistance 20Ω be converted into a voltmeter of range 10 V .
(1) 9980Ω in series
(2) 4980Ω in series
(3) 9980Ω in parallel
(4) 4980Ω in parallel
35. Two galvanometer A and B require 3 mA and 6 mA current respectively to produce the same deflection of 10 divisions Then -
(1) A is more sensitive than B
(2) B is more sensitive than A
(3) A and B are equally sensitive
(4) Sensitive ness of B is twice that of A

SECTION - B (PHYSICS)

36. Speeds of two cars are 2 U and 3 U at an instant. The ratio of the respective distances at which the t wo cars are stopped at the same instant is :
(1) $\frac{3}{2}$
(2) $\frac{2}{3}$
(3) $\frac{4}{9}$
(4) $\frac{9}{4}$
37. The coordinates of a moving particle is $x=2 \alpha t^{4}$ and $\mathrm{y}=4 \beta \mathrm{t}^{4}(\mathrm{t} \longrightarrow$ times $\& \alpha, \beta \rightarrow$ constant $)$ The speed at any time t is :
(1) $8 t^{3} \sqrt{\alpha^{2}+\beta^{2}}$
(2) $8 \mathrm{t}^{2} \sqrt{\alpha^{2}+4 \beta^{2}}$
(3) $4 t^{3} \sqrt{\alpha^{2}+4 \beta^{2}}$
(4) $8 \mathrm{t}^{3} \sqrt{\alpha^{2}+4 \beta^{2}}$
38. The relation between time t and distance x is $t=2 x^{2}+3 x$. The acceleration is (v is velocity) :-
(1) $+2 v^{3}$
(2) $-3 v^{3}$
(3) $-4 v^{3}$
(4) $+5 v^{3}$
39. A particle is projected from ground from origin. Its path is given by $y=10 x-2 x^{2}$. Then time of flight is (Use $g=10 \mathrm{~m} / \mathrm{s}^{2}$) :-
(1) $\sqrt{10} \mathrm{sec}$
(2) 10 sec
(3) $\sqrt{5} \mathrm{sec}$
(4) 5 sec
40. A body is thrown up with relative velocity u in a lift moving upward and the time of flight is t the acceleration with which the lift is moving up is -
(1) $\frac{u+g t}{t}$
(2) $\frac{u-g t}{t}$
(3) $\frac{2 u-g t}{t}$
(4) $\frac{2 u+g t}{t}$
41. The acceleration-displacement graph of a particle moving in a straight line as shown. initial velocity of particle is zero. Find velocity $(\mathrm{m} / \mathrm{s})$ of particle when displacement $\mathrm{s}=16 \mathrm{~m}$.

(1) 6
(2) 10
(3) 8
(4) 12
42. Water drops fall at regular intervals from a tap which is 10 m above the ground. The fifth drop is leaving the tap at the instant the first drop touches the ground. How far above the ground is the third drop at that instant. $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(1) $\frac{15}{2} \mathrm{~m}$
(2) $\frac{25}{4} \mathrm{~m}$
(3) 5 m
(4) 6 m
43. Match the column for the given figure :

Internal resistances of 7 V and 2 V cell are 1.5Ω and 1Ω respectively :

	Column I		Column II
(A)	Terminal potential difference of cell A	(P)	3 V
(B)	Terminal potential difference of cell B	(Q)	5.5 V
(C)	Powel loss at 1.5Ω	(R)	1 watt
(D)	$\mathrm{P}_{\text {owe }} \mathrm{l}_{\text {Oss }}$ at 1Ω	(S)	1.5 watt

(1) (A) $\longrightarrow(\mathrm{Q}) ;(\mathrm{B}) \longrightarrow(\mathrm{P}) ;(\mathrm{C}) \longrightarrow(\mathrm{S}) ;(\mathrm{D}) \longrightarrow(\mathrm{R})$
(2) (A$) \longrightarrow(\mathrm{P}) ;(\mathrm{B}) \longrightarrow(\mathrm{Q}) ;(\mathrm{C}) \longrightarrow(\mathrm{R})$;
$;(\mathrm{D}) \longrightarrow(\mathrm{S})$
(3) (A) $\longrightarrow(\mathrm{P}) ;(\mathrm{B}) \longrightarrow(\mathrm{P}) ;(\mathrm{C}) \longrightarrow(\mathrm{R})$;
$(\mathrm{D}) \longrightarrow(\mathrm{R})$
(4) (A$) \longrightarrow(\mathrm{Q}) ;(\mathrm{B}) \longrightarrow(\mathrm{Q}) ;(\mathrm{C}) \longrightarrow(\mathrm{S}) ;(\mathrm{D}) \longrightarrow(\mathrm{R})$
44. Maximum safe current for a fuse wire of radius r is i Then for the wire of radius 4 r max safe currentwillbe -
(1) i
(2) $\frac{\mathrm{i}}{8}$
(3) 8 i
(4) 4 i
45. A wire of resistance R is compressed so that its length decreases by 10%. The percentage change in its resistance is :
(1) 10%
(2) 11%
(3) 19%
(4) 21%
46. A galvanometer of 50Ω resistance has 25 division. A current of 4×10^{4} A gives a deflect ion of one division. To convert this galvanometer irto a voltmeter whose voltage sensitivity is 1 div/volt, it should be co nnected with a resistance of -
(1) 2500Ω
(2) 245Ω
(3) 2550Ω
(4) 2450Ω
47. In the given fig, if power loss across each resistor is same then relation between R_{1}, R_{2} and R_{3} is -

(1) $\mathrm{R}_{1}=4 \mathrm{R}_{2}=\mathrm{R}_{3}$
(2) $\mathrm{R}_{1}=\mathrm{R}_{3}=\frac{\mathrm{R}_{2}}{4}$
(3) $\mathrm{R}_{1}=\mathrm{R}_{2}=\frac{\mathrm{R}_{3}}{4}$
(4) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}$
48. In the given fig, which one bulb will get fused $200 \mathrm{~V}, 100 \mathrm{~W} 100 \mathrm{~V}, 100 \mathrm{~W}$

(1) Bulb B_{1}
(2) Bulb B_{2}
(3) Both
(4) None
49. A potentiometer wire of length 10 m and resistance 30Ω is connected in series with a battery of emf 2.5 volt and internal resistance 5Ω and an external resistance R. If the fall of potential along the potentiometer wire is $50 \mu \mathrm{~V} / \mathrm{mm}$ then the value of R (in Ω) is -
(1) 115Ω
(2) 80Ω
(3) 50Ω
(4) 100Ω
50. For the circuit diagram shown in the fig, the current must not exceed than (maximum sustainable powers of resistances are shown in the diagram) -

(1) 1 mA
(2) 2 mA
(3) 5 mA
(4) 10 mA

Topic: Solutions, Classification of Elements and Periodicity in Properties

SECTION-A (CHEMISTRY)

51. How many grams of $\mathrm{CH}_{3} \mathrm{OH}$ would have to be added to water to prepare 150 ml of a solution that is $2 \mathrm{M} \mathrm{CH}_{3} \mathrm{OH}$:
(1) 9.6 g
(2) 2.4 g
(3) $9.6 \times 10^{3} \mathrm{~g}$
(4) $4.3 \times 10^{2} g$
(1) 502 mm of Hg
(2) 248 mm of Hg
(3) 600 mm of Hg
(4) 250.6 mm of Hg
52. Calculate the molality of $80 \%(w / V) \quad \mathrm{H}_{2} \mathrm{SO}_{4}$ solution, if the density of the solution is $180 \mathrm{~g} / \mathrm{m} \mathrm{\ell}$:-
(1) 8.9
(2) 1.02
(3) 10.8
(4) 8.1
53. What will be the normality of $20 \mathrm{~V} \mathrm{H}_{2} \mathrm{O}_{2}$ solution?
(1) 1.78
(2) 3.57
(3) 3
(4) 6.66
54. $\quad 200 \mathrm{ml}, \frac{\mathrm{M}}{10} \mathrm{H}_{2} \mathrm{SO}_{4}$ is completely neutral ized by decinormal NaOH solution, what will be the volume of NaOH required -
(1) 200 ml
(2) 400 ml
(3) 100 ml
(4) 600 ml
55. Higher the value of K_{H} at a given pressure, suggests that -
(1) The higher is the solubility of the gas in the liquid
(2) The lower is the solubility of the gas in the liquid.
(3) Solubility of gases has no relation with K_{H}
(4) All gases have same K_{H} values but different solubilities
56. If an ideal solution is made by mixing 2 moles of benzene $\left(\mathrm{P}^{\mathrm{o}}=266 \mathrm{~mm}\right.$ of Hg$)$ and 3 moles of another liquid ($\mathrm{P}^{\mathrm{o}}=236 \mathrm{~mm}$ of Hg). The total vapour pressure of the solution at the same temperature would be :
57. If two substances A and B have $\mathrm{P}_{\mathrm{A}}{ }^{\circ}: \mathrm{P}_{\mathrm{B}}{ }^{\circ}=1: 2$ and have mole fraction in solution in the ratio $1: 2$ then mole fraction of A in vapour phase :-
(1) 0.33
(2) 0.25
(3) 0.20
(4) 0.52
58. The boiling point of an azeotropic mixture of water and ethyl alcohol is less than that of theoretical value of water and alcohol mixture. Hence the mixture shows :
(1) that solution is highly saturated
(2) positive deviation from Raoult's law
(3) negative deviation from Raoult's law
(4) none of these
59. If 2 moles of sugar is dissolved in 1 kg of water, the resulting solution will show the boiling point:-
(1) $100^{\circ} \mathrm{C}$
(2) $0.52^{\circ} \mathrm{C}$
(3) $1.04^{\circ} \mathrm{C}$
(4) $101.04^{\circ} \mathrm{C}$
60. The relationship between osmotic pressures $\left(\pi_{1}, \pi_{2}\right.$ and π_{3}) at a definite temperature when 1 g glucose, 1 g urea and 1 g sucrose are dissolved in 1 litre of water separately is :
(1) $\pi_{1}>\pi_{2}>\pi_{3}$
(2) $\pi_{3}>\pi_{1}>\pi_{2}$
(3) $\pi_{2}>\pi_{1}>\pi_{3}$
(4) $\pi_{2}>\pi_{3}>\pi_{1}$
61. In which case van t hoff factor is maximum?
(1) $\mathrm{KCl}, 50 \%$ ionised
(2) $\mathrm{K}_{2} \mathrm{SO}_{4}, 40 \%$ ionised
(3) $\mathrm{SnCl}_{4}, 20 \%$ ionised
(4) $\mathrm{FeCl}_{3}, 30 \%$ ionised
62. Arrange the following in the increasing order of their boiling points :-
(i) $10^{-3} \mathrm{M} \mathrm{NaCl}$
(ii) $10^{-3} \mathrm{M}$ Urea
(iii) $10^{-3} \mathrm{M} \mathrm{MgCl}_{2}$
(iv) $10^{-2} \mathrm{M} \mathrm{NaCl}$
(1) (i) $<$ (ii) $<$ (iv) $<$ (iii)
(2) (ii) $<$ (i) $=$ (iii) $<$ (iv)
(3) (ii) $<$ (i) $<$ (iii) $<$ (iv)
(4) (iv) $<$ (iii) $<$ (i) $=$ (ii)
63. What would be the freezing point of 20% i onized 0.2 molal solution of weak electrolyte XY $:-\left[\mathrm{K}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.86^{\circ} \mathrm{C} / \mathrm{m}\right]$
(1) $-0.31^{\circ} \mathrm{C}$
(2) $-045^{\circ} \mathrm{C}$
(3) $-0.53{ }^{\circ} \mathrm{C}$
(4) $-090^{\circ} \mathrm{C}$
64. Consider 0.1 M solutions of two solutes X and Y . The solute X behaves as a univalent electrolyte while the solute Y dimerises in solution. Which of the following state ments are correct regarding these solutions ?
(a) The boiling point of the solution of X will be higher than that of Y
(b) The osmotic pressure of the solution of Y will be lower than that of X
(c) The freezing point of the solution of X will be lower than that of Y
(d) The relative lowering of vapour pressure of both the solutions will be the same
Select the correct answer from the given option :-
(1) a, b and c
(2) b, c and d
(3) a, b and d
(4) a, c and d
65. pH of a 0.1 M monobasic acid is found to be 2 . Hence its osmotic pressure at a given temperature T K is-
(1) 0.1 RT
(2) 0.11 RT
(3) 1.1 RT
(4) 0.01 RT
66. One molal solution of a carboxylic acid in benzene shows the elevation of boiling point of 1.518 K . The degree of association for dimerization of the acid in benzene is $\left(\mathrm{K}_{\mathrm{b}}\right.$ for benzene $=2.53 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$) :
(1) 60%
(2) 70%
(3) 75%
(4) 80%
67. Phenol associates in benzene as :
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} \rightleftharpoons \frac{1}{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right)_{2}$
If degree of association of phenol is 30% then Van't hoff factor (i) is :-
(1) 1
(2) 0.8
(3) 0.85
(4) 1.15
68. 3% aqueous solution of dextrose (molecular weight $=180$) is isotonic with 2% aqueous solution of another covalent solute in water at $25^{\circ} \mathrm{C}$. The molar mass of the solute is :-
(1) 60
(2) 120
(3) 180
(4) 90
69. Among the following least and most polar bonds are respectively :-
(a) $\mathrm{C}-\mathrm{I}$
(b) $\mathrm{N}-\mathrm{O}$
(c) $\mathrm{C}-\mathrm{F}$
(d) $\mathrm{P}-\mathrm{F}$
(1) d and c
(2) a and d
(3) b and d
(4) b and c
70. Which among the following is correct order of stability of hydrohalides?
(1) $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF}$
(2) $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}$
(3) $\mathrm{HF}>\mathrm{HBr} \mathrm{HCl}>\mathrm{HI}$
(4) $\mathrm{HCl}>\mathrm{HF}>\mathrm{HBr}>\mathrm{HI}$
71. Match the column

Column-I		Column-Il	
A	Ionisation potential	P	$\mathrm{O}<\mathrm{F}<\mathrm{N}$
B	Electronegativity	Q	$\mathrm{N}<\mathrm{O}<\mathrm{F}$
C	$\mathrm{Z}_{\text {eff }}$	R	$\mathrm{O}<\mathrm{N}<\mathrm{F}$
D	Electron affinity	S	$\mathrm{N}<\mathrm{C}<\mathrm{O}$

(1) A-P, B-Q, C-S, D-R
(2) A-R, B-Q, C-Q, D-Q,S
(3) A-P, B-Q, C-Q, D-R
(4) A-R, B-Q,R, C-P, D-S
72. Assertion (A) : Atomic radius increases, descending down the group.

Reason (R) : On going down the group EN increase.
(1) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
(2) (A) is correct but (R) is not correct
(3) (A) is incorrect but (R) is correct
(4) Both (A) and (R) are correct but (R) is the correct explanation of (A)
73. Choose the correct statement-
(1) Van der Waal radius is larger than metallic radius because Van der Waal bond is weaker than metallic bond.
(2) Van der Waal radius is larger than metallic radius but these radii are independent from strength of metallic and Van der Waal bond.
(3) Van der Waal radius is smaller than metallic radius because metallic bond are stronger bond in Van der Waal bond.
(4) Van der Waal radius is smaller than metallic radius because metallic bond is weaker than Van der Waal bond .
74. The order of size is :
(1) $\mathrm{S}^{-2}>\mathrm{Cl}^{-}>\mathrm{O}^{-2}>\mathrm{F}^{-}$
(2) $\mathrm{Cl}^{-}>\mathrm{S}^{-2}>\mathrm{O}^{-2}>\mathrm{F}^{-}$
(3) $\mathrm{S}^{-2}>\mathrm{O}^{-2}>\mathrm{Cl}^{-}>\mathrm{F}^{-}$
(4) $\mathrm{S}^{-2}>\mathrm{O}^{-2}>\mathrm{F}^{-}>\mathrm{Cl}^{-}$
75. Consider the following statements :
(i) Atomic radii decreases across a row of the periodic table when we move from left to right.
(ii) Atomic radii increases down the group as we move from top to bottom.
(iii) Although the arrangement elements is based on atomic numbers, vertical families share similar chemical properties.

Which of the statement(s) given above is/are correct?
(1) (i) and (ii)
(2) (i) and (iii)
(3) (ii) and (iii)
(4) (i), (ii) and (iii)
76. Assertion (A): The ionic radii of O^{2-} and Mg^{2+} are same.
Reason (\mathbf{R}): Both O^{2-} and Mg^{2+} are isoelectronic species.
In the light of the above statements, choose the correct answer from the options given below.
(1) Both (A) and (R) are true and (R) is the correct explanation of (A).
(2) Both (A) and (R) are true but (R) is not the correct explanation of (A).
(3) (A) is true but (R) is false.
(4) (A) is false but (R) is true.
77. The ionization energy of boron is less than that of beryllium because :-
(1) beryllium has a higher nuclear charge than boron
(2) beryllium has a lower nuclear charge than boron
(3) the outermost electron in boron occupies a 2p-orbital
(4) the 2 s and 2 p -orbitals of boron are degenerate
78. The ionisation energy of nitrogen is more than oxygen because of :-
(1) The size of nitrogen atom is smaller
(2) More pe ne trating e ffe ct
(3) More attraction of electrons by the nucleus
(4) The stability of half fill ed p-orbital
79. The inc orrect statement is
(1) The second ionisation energy of Se is greater than that of second ionisation energy of As
(2) The first ionisation energy of C^{2+} ion is greater than that of first ionisation energy of N^{2+} ion
(3) The third ionisation energy of F is greater than that of third ionisation energy of O.
(4) Halogens have highest I E. in respective period.
80. Match List I with List II with correct code :-

List I				List II	
	$\mathbf{1 E}_{1}$	$1 \mathbf{E}_{2}$	$\mathbf{1 E}_{3}$		
A	1510	-	-	1	H
B	495	6500	10200	2	Li
C	840	1630	13100	3	Be
D	600	2050	3100	4	B

(1 E in KJmol^{-1})
(1) A-1, B-3, C-4, D-2
(2) A-3, B-4, C-2, D-1
(3) A-4, B-3, C-1, D-2
(4) A-1, B-2, C-3, D-4
81. Which one of the following statements is incorrect in relation to ionisation enthalpy?
(1) Ionization enthalpy increases for each successive electron removal
(2) The greatest increase in ionization enthalpy is experienced on removal of electron from core of noble gas configuration.
(3) Determination of valence electrons is marked by a large jump in ionization enthalpy.
(4) Removal of electron from orbitals bearing lower n value is easier than from orbital having higher n value.
82. Electronic configurations of four elements A, B, C and D are given below
Which of the following is the correct order of increasing tendency of gain electron :-
(A) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$
(B) $1 s^{2} 2 s^{2} 2 p^{4}$
(C) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
(D) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{5}$
(1) A $<$ C $<$ B $<$ D
(2) A $<$ B $<$ C $<$ D
(3) D $<$ B $<$ C $<$ A
(4) D $<$ B $<$ A $<$ C
83. From the following given electronic configuration. Identify the correct order of electron affinity.
(I) $[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{5}$
(II) $[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$
(III) $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{5}$
(IV) $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{3}$
(1) I $>$ II $>$ III $>$ IV
(2) III $>$ I $>$ IV $>$ II
(3) I $<$ II $<$ III $<$ IV
(4) II $>$ III $>$ IV $>$ I
84. If Electron a ffinity of an element M is $\mathrm{x} \mathrm{kJ} / \mathrm{mol}$ than ionisation potential ofthis el ement:-
(1) More than x
(2) less than x
(3) equal to x
(4) All of these
85. In correct statement for the given configuration :$[\mathrm{Xe}] 4 \mathrm{f}^{7} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2}$
(1) It placed in d-block IIIB group, $6^{\text {th }}$ period
(2) It is a naturale lement
(3) It $h_{\text {ave }} m_{a x i} m_{u} m_{u} n_{p a} i r_{e d} e^{-i n l}{ }_{a} n_{t} h_{a n i} n i_{d}$
(4) It is Gd

SECTION-B (CHEMISTRY)

86. If mole fraction of sugar in its aqueo us sol ution is 04 then its mola litywill be
(1) 125
(2) 21.5
(3) 37
(4) 24
87. What is the concentration of chloride ion in the mixture of 500 ml . (1M) $\mathrm{KC1}$ solution and $500 \mathrm{ml}(1 \mathrm{M}) \mathrm{MgCl}_{2}$ solution?
(1) 30 M
(2) 1.5 M
(3) 20 M
(4) 0.5 M
88. At $27^{\circ} \mathrm{C}$ vapour pressure of pure 1 iquid A is 70 tor. This liquid makes ideal solution with liquid B The mole fraction of B is 0.2 and the total pressure oft he solution at $27^{\circ} \mathrm{C}$ has been found to be 84 torr. What is the vapour pressure of pure liq uid B at $27^{\circ} \mathrm{C}$
(1) 14 torr
(2) 140 to rr
(3) 56 torr
(4) 70 torr
89. Certa in amount of urea is dissol ve d in 200 g of water in order to decrea se the vapour pressure of water by 25% The molal ity of the sol utionis
(1) $1.85 \mathrm{~m}(2) 093 \mathrm{~m}$
(3) 185 m
(4) 93 m
90. An a que ous solution containing 5% by weight of urea and 10% byweig ht of gl ucose. Fre ezing point of solution is [K_{f} for $\mathrm{H}_{2} \mathrm{O}$ is $186 \mathrm{~K} \mathrm{~mol}^{-1} \mathrm{~kg}$]
(1) $2.78^{\circ} \mathrm{C}$
(2) $-304^{\circ} \mathrm{C}$
(3) $-596^{\circ} \mathrm{C}$
(4) $596^{\circ} \mathrm{C}$
91. The solution which has the lowest freezing point is :-
(1) 0.1 M potassium chloride
(2) 0.1 M potassium sulphate
(3) 0.1 M potassium nitrate
(4) 0.1 M aluminium sulphate
92. If 1 molal solution of benzoic acid in benzene has a freezing point depression of $2.56^{\circ} \mathrm{C}$.
$\left(\mathrm{K}_{\mathrm{f}}=5.12^{\circ} \mathrm{C} \mathrm{mol}^{-1} \mathrm{~kg}\right)$ and boiling point elevation of $2.53^{\circ} \mathrm{C}\left(\mathrm{K}_{\mathrm{b}}=2.53^{\circ} \mathrm{C} \mathrm{mol}{ }^{-1} \mathrm{~kg}\right)$, then select the correct statement/s :
Statement I : there is dimer formation when undergoing freezing.
Statement II : there is no change when undergoing boiling.
Statement III : reverse of Statements I and II
Statement IV : dimer formation during freezing and boiling of solution.
(1) I, II
(2) II, III
(3) III, I
(4) only I
93. Following statements regarding the periodic trends of chemical reactivity of the alkali metals and the halogens are given. Which of these statements gives the correct picture:
(1) The reactivity decreases in the alkali metals but increases in the halogens with increase in atomic number down the group.
(2) In both the alkali metals and the halogens the chemical reactivity decreases with increase in atomic number down the group.
(3) Chemical reactivity increases with increase in atomic number down the group in both the alkali metals and halogens.
(4) In alkali metals the reactivity increases but in the halogens it decreases with increase in atomic number down the group.
94. Statement-I : Na^{+}and Al^{3+} are isoelectronic but the magnitude of ionic radius of $\mathrm{AP}^{\beta+}$ is less than that of Na^{+}.
Statement-II : The magnitude of effective nuclear charge of the outer shell electrons in Al^{3+} is greater than that in Na^{+}.
Which of the following is correct for these is statements.
(1) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
(2) Statement-I is True, Statement-II is True; Statement-II is not a correct explanation for Statement-I
(3) Statement-I is True, Statement-II is False
(4) Statement-I is False, Statement-II is True
95. The correct order of ionic radii for The ions, $\mathrm{P}^{3-}, \mathrm{S}^{2-}, \mathrm{Ca}^{2+}, \mathrm{K}^{+}, \mathrm{Cl}^{-}$is :
(1) $\mathrm{P}^{3-}>\mathrm{S}^{2-}>\mathrm{Cl}^{-}>\mathrm{K}^{+}>\mathrm{Ca}^{2+}$
(2) $\mathrm{CI}^{-}>\mathrm{S}^{2-}>\mathrm{p}^{3-}>\mathrm{Ca}^{2+}>\mathrm{K}^{+}$
(3) $\mathrm{P}^{3-}>\mathrm{S}^{2-}>\mathrm{Cl}^{-}>\mathrm{Ca}^{2+}>\mathrm{K}^{+}$
(4) $\mathrm{K}^{+}>\mathrm{Ca}^{2+}>\mathrm{P}^{3-}>\mathrm{S}^{2-}>\mathrm{CI}$
96. In given following process :
$\mathrm{M} \longrightarrow \mathrm{M}^{+} \quad$ I.P. $=50 \mathrm{eV}$
$\mathrm{M} \longrightarrow \mathrm{M}^{+2} \quad$ I.P. $=150 \mathrm{eV}$
Select correct statement :
(1) IP_{1} of M^{+}is 50 eV
(2) IP_{2} of M is 150 eV
(3) IP_{2} of M^{+}is 150 eV
(4) IP_{2} of M is 100 eV
97. Match list I with list II and then select the correct answer from the codes given below the lists :-

List I		List II	
A	Isoelectronic	a	$\mathrm{A}^{+}+$energy $\rightarrow \mathrm{A}^{++}$
B	Half filled orbital	b	$\mathrm{Ar}, \mathrm{K}^{+}, \mathrm{Ca}^{+}$
C	Second ionisation energy	c	Cerium
D	Lanthanide	d	Arsenic

(1) $\mathrm{A}=\mathrm{c}, \mathrm{B}=\mathrm{b}, \mathrm{C}=\mathrm{d}, \mathrm{D}=\mathrm{a}$
(2) $\mathrm{A}=\mathrm{b}, \mathrm{B}=\mathrm{c}, \mathrm{C}=\mathrm{a}, \mathrm{D}=\mathrm{d}$
(3) $\mathrm{A}=\mathrm{d}, \mathrm{B}=\mathrm{c}, \mathrm{C}=\mathrm{a}, \mathrm{D}=\mathrm{b}$
(4) $\mathrm{A}=\mathrm{b}, \mathrm{B}=\mathrm{d}, \mathrm{C}=\mathrm{a}, \mathrm{D}=\mathrm{c}$
98. The electron gain enthalpies (in $\mathrm{kJ} \mathrm{mol}^{-1}$) of three halogens, X, Y and Z are respectively $-349,-333$ and -325 . Then X, Y and Z are respectively :-
(1) F, Cl and Br
(2) Cl, F and Br
(3) Cl, Br and F
(4) Br, Cl and F
99. Which is correct :

	Property		KJ/mole
(a)	EA of F	(p)	349
(b)	EA of Cl	(q)	1256
(c)	IP of F	(r)	328
(d)	IP of Cl	(s)	1681

Correct match is :
(1) $\mathrm{a}=\mathrm{p} \quad \mathrm{b}=\mathrm{r} \quad \mathrm{c}=\mathrm{q} \quad \mathrm{d}=\mathrm{s}$
(2) $\mathrm{a}=\mathrm{r} \quad \mathrm{b}=\mathrm{q} \quad \mathrm{c}=\mathrm{s} \quad \mathrm{d}=\mathrm{p}$
(3) $\mathrm{a}=\mathrm{r} \quad \mathrm{b}=\mathrm{q} \quad \mathrm{c}=\mathrm{p} \quad \mathrm{d}=\mathrm{s}$
(4) $a=r \quad b=p \quad c=s \quad d=q$
100. Which of the following electronic configuration does not represent any block element :-
(1) $(n-1) d^{1-10} \mathrm{~ns}^{1-2}(\mathrm{n}=4,5,6 \ldots)$
(2) $(\mathrm{n}-2) \mathrm{f}^{14}(\mathrm{n}-1) \mathrm{d}^{2-10} \mathrm{~ns} 1,2(\mathrm{n}=6)$
(3) $(\mathrm{n}-1) \mathrm{d}^{1-10} \mathrm{~ns}^{0,1,2}(\mathrm{n}=4,5,6 \ldots$)
(4) $(\mathrm{n}-1) \mathrm{d}^{1-10} \mathrm{~ns}^{1-2}(\mathrm{n}=3)$

Topic: Reproduction in Organisms, Sexual

 reproduction in flowering plants
SECTION-A (BOTANY)

101. Function/s of tapetum is/are :-
(1) Provide protection to developing pollen grains
(2) Provide nourishment to developing pollen grains.
(3) Secretion of sporopollenin.
(4) Both (2) and (3)
102. The microsporangium develop further and become \qquad _.
(1) Pollen grains
(2) Pollen mother cell
(3) Pollen sac
(4) Megasporangium
103. What would be the ploidy of the cells of the tetrad.
(1) Haploid
(2) Diploid
(3) Tetraploid
(4) Pentaploid
104. When there are more than one pistils may be fused together, this condition is called :-
(1) Synandrous
(2) Syngenesious
(3) Syncarpous
(4) Apocarpous
105. Landing platform for pollen grains is :-
(1) Stigma
(2) Style
(3) Funicle
(4) Ovary
106. The body of ovule fuses with funicle in the region called :-
(1) Raphe
(2) Integument
(3) Hilum
(4) Placenta
107. The method of embryo sac formation from single megaspore is known as :-
(1) Monosporic development
(2) Bisporic development
(3) Tetraporic development
(4) Eusporangiate development
108. A typical Angiosperm embryo sac, at maturity is :-
(1) 2-nucleate and 2-celled
(2) 4-nucleate and 4-celled
(3) 8-nucleate and 7-celled
(4) 9-nucleate and 7-celled
109. Viability of pollen grains of wheat and rice is :-
(1) 30 seconds
(2) 30 minutes
(3) 20 hours
(4) 30 days
110. Egg apparatus consist of :-
(1) One synergid and one egg cell
(2) Two synergids and one egg cell
(3) One egg cell and three synergids
(4) Two egg cells and one synergid
111. How many meiotic and mitotic division are required for the formation of fully mature male gametophyte in a typical angiosperm?
(1) One meiotic and three mitotic divisions
(2) One meiotic and two mitotic divisions
(3) Two meiotic and two mitotic divisions
(4) Three meiotic and one mitotic division
112. How many meiotic and mitotic divisions are required to produce 24 male gametes in a typical angiosperm :
(1) 24 meiotic and 3 mitotic division
(2) 3 meiotic and 24 mitotic division
(3) 12 meiotic and 3 mitotic division
(4) 3 meiotic and 12 mitotic division
113.

Find out the correct option for A to D in the given above diagram :

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
(1)	Epidermis	Endothecium	Middle layers	Tapetum
(2)	Epidermis	Middle layers	Endothecium	Tapetum
(3)	Tapetum	Middle layers	Endothecium	Epidermis
(4)	Tapetum	Endothecium	Epidermis	Middle layers

114. Read the following statements carefully.
(1) When the pollen grain is mature it contains two cells i.e. vegetative cell and generative cell.
(2) In 40% of angiosperms pollen grains shed at two celled stage.
(3) Vegetative cell is smaller and generative cell is larger.
(4) In over 60% of angiosperms pollen grain shed at three celled stage.
How many above statement/s are wrong :-
(1) One
(2) Two
(3) Three
(4) Four
115. Statement-I : Six of the eight nuclei are surrounded by cell walls and organised into cells in embryosac.
Statement-II : Two polar nuclei situated above the egg apparatus in the large central cell of embryosac.
(1) Both statement-I and statement-II are correct
(2) Both statement-I and Statement-II are incorrect
(3) Statement-I is incorrect and statement-II is correct
(4) Statement-I is correct and statement-II is incorrect
116. What will be the ploidy of the cells of embryosac, nucellus, pollen mother cell megaspore, pollen grain, synergid, secondary nucleus, respectively.
(1) $\mathrm{n}, 2 \mathrm{n}, \mathrm{n}, 2 \mathrm{n}, \mathrm{n}, \mathrm{n}, 2 \mathrm{n}(2) \mathrm{n}, 2 \mathrm{n}, 2 \mathrm{n}, \mathrm{n}, \mathrm{n}, 2 \mathrm{n}, \mathrm{n}$
(3) $\mathrm{n}, 2 \mathrm{n}, 2 \mathrm{n}, \mathrm{n}, \mathrm{n}, \mathrm{n}, 2 \mathrm{n}$
(4) $n, 2 n, n, 2 n, n, n, n$
117. Read the statements carefully :-
(1) Filiform apparatus play an important role in guiding the pollen tube into the synergid.
(2) Two mitotic division are required for the formation of mature female gametophyte in a typical angiosperm.
(3) The terminal end of the filament of stamen is attach to the thalamus.
(4) The megaspore represents the male gametophyte. How many above statements are incorrect?
(1) One
(2) Two
(3) Four
(4) Three
118. Read the following statements carefully.
(A) Autogamy not requires synchrony in pollen release and stigma receptivity.
(B) Cleistogamous flowers are invaribly autogamous.
(C) Geitonogamy is functionally cross pollination.
(D) Geitonogamy is genetically similar to autogamy.

How many statements is/are correct?
(1) Four
(2) Three
(3) Two
(4) One
119. Match the column I with column II.

Column - I		Column - II	
A.	Vallisneria	(i)	Insect pollination
B.	Water hyacinth	(ii)	Water pollination
C.	Yucca	(iii)	Tallest flower
D.	Amorphophallus	(iv)	Moth pollination

Correct answer is -
(1) $\mathrm{A}-\mathrm{i}, \mathrm{B}-\mathrm{ii}, \mathrm{C}-\mathrm{iii}, \mathrm{D}-\mathrm{iv}$
(2) $\mathrm{A}-\mathrm{ii}, \mathrm{B}-\mathrm{i}, \mathrm{C}-\mathrm{iv}, \mathrm{D}-\mathrm{iii}$
(3) $\mathrm{A}-\mathrm{iv}, \mathrm{B}-\mathrm{iii}, \mathrm{C}-\mathrm{i}, \mathrm{D}-\mathrm{ii}$
(4) $\mathrm{A}-\mathrm{iii}, \mathrm{B}-\mathrm{i}, \mathrm{C}-\mathrm{ii}, \mathrm{D}-\mathrm{iv}$
120. Assertion (A) : Continued self pollination result in inbreeding depression.
Reason (R) : Out breeding devices encourage cross pollination.
(1) Both Assertion \& Reason are True \& the Reason is a correct explanation of the Assertion.
(2) Both Assertion \& Reason are True but Reason is not a correct explanation of the Assertion.
(3) Assertion is True but the Reason is False.
(4) Both Assertion \& Reason are False.
121. Statement I - Filiform apparatus present at micropylar part of the synergids guides the entry of pollen tube.
Statement II - Plant breeder manipulate pollen pistil interaction to get desired hybrids.
(1) Statement I and II both are correct.
(2) Statement I and II both are incorrect.
(3) Only Statement I is correct.
(4) Only Statement II is correct.
122. Given figure showing enlarged view of an egg apparatus and entry of pollen tube into a synergid.

Select the correct option in which A, B, C \& D are correctly identified?

	A	B	C	D
1	Plasma membrane	Central cell	Egg nucleus	Synergid
2	Central cell	Egg nucleus	Plasma membrane	Synergid
3	Cell wall	Central cell	Synergid	Male gametes
4	Central cell	Synergid	Male gametes	Polar nuclei

123. The only type of pollination in which during pollination brings genetically different types of pollen grains to the stigma -
(1) Geitonogamy
(2) Xenogamy
(3) Autogamy
(4) Syngamy
124. Which of following is correct for wind pollination?
(1) The pollen grains are light and sticky.
(2) Well exposed stamens.
(3) Solitary flower with many ovules in each ovary.
(4) Pollen grains are protected from wetting by mucilaginous covering.
125. \qquad flowers are not very colourful and do not produce nectar -
(1) Wind pollinated
(2) Water pollinated
(3) Animal pollinated
(4) $1 \& 2$ both
126. The dominant biotic pollinating agents among the insect is -
(1) Bees
(2) Butterflies
(3) Beetles
(4) Moths/wasps
127. How many cells and haploid nuclei are involved to produce primary endosperm cell (PEC), respectively -
(1) $2 \& 2$
(2) $3 \& 3$
(3) $3 \& 2$
(4) $2 \& 3$
128. If the female parent produces unisexual flowers, there is :-
(1) Need of emasculation
(2) No need of emasculation
(3) No seed production
(4) No artificial hybridisation
129. How many haploid nuclei are involved in double fertilization is -
(1) Two
(2) Three
(3) Four
(4) Five
130. A phenomenon called apomixis is found in some a ngiosperms, particularly in -
(1) Legumes
(2) Grasses
(3) Orchid
(4) Striga
131. Initially the embryo in flowering plant is -
(1) Gl obular
(2) He art shaped
(3) Filamentous
(4) Torpe do
132. Embryo of monoc otyledons possess -
(1) An embryonal axis and only one cotyledon
(2) An embryonal axis and two cotyledons
(3) Epicotyl and testa
(4) Tegmen and Embryonal axis
133. In the given diagram, labelled parts A, B and C are :

	A	B	C
1	Plumule	Cotyledons	Hypocotyl
2	Radicle	Root cap	Hypocotyl
3	Plumule	Hypocotyl	Radicle
4	Plumule	Radicle	Root cap

134. Residual, persistent nucellus in seed of black pepper and beet is -
(1) Endosperm
(2) Perisperm
(3) Pericarp
(4) Albumin
135. In which of the following plants some of the nucel lar cells develop into embryos?
(1) Orchid and Datepalm
(2) Citrus\& Mango
(3) Banana and Wheat
(4) Maize and Rice

SECTION-B (BOTANY)

136. Read the following statements carefully :-
(1) All flowering plants shows sexual reproduction.
(2) Flowers are objects of aesthetics, ornamental and cultural value.
(3) Flowers have always been used as symbols for conveying important human feelings.
(4) Flower is a fascinating organ of Angiosperms. How many above statements are correct/s ?
(1) One
(2) Two
(3) Three
(4) Four
137. Flower is :-
(1) a modified stem
(2) a modified leaf
(3) a modified shoot
(4) a modified thalamus
138. Statement-I : Flowers are morphological and embryological marvels.
Statement-II : Flower is a site of asexual reproduction.
(1) Statement I and II both are correct.
(2) Statement I is correct and statement II is incorrect.
(3) Statement I is incorrect and statement II is correct.
(4) Both statements are incorrect.
139. Outermost whorl of flower is :-
(1) Calyx
(2) Corolla
(3) Androecium
(4) Gynoecium
140. Typical angiospermic anther is :-
(1) Bilobed and monothecous
(2) Bilobed and tetrathecous
(3) Bilobed, dithecous and tetrasporangiate
(4) Bilobed and bisporangiate
141. Match the columns and select correct option :-

Options :-
(1) 1-a, 2-b, 3-c, 4-d
(2) 1-b, 2-a, 3-c, 4-d
(3) 1-d, 2-c, 3-b, 4-a
(4) 1-c, 2-d, 3-b, 4-a
142. Assertion (A): Megasporogenesis result in the production of four megaspores.

Reason (\boldsymbol{R}): Megaspore mother cell undergoes meiotic division.
(1) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
(2) (A) is correct but (R) is not correct
(3) (A) is incorrect but (R) is correct
(4) Both (A) and (R) are correct and (R) is the correct explanation of (\mathbf{A})
143. Which of the following option is correct regarding apocarpous condition?
(1) Hibiscus, Rose, Michelia
(2) Rose, Michelia, Lotus
(3) Lotus, Rose, Hibiscus
(4) Hibiscus, Papaver, Rose
144. Read the following statements carefully.
(A) In flowering plants male gamete is motile.
(B) In a normal flower which opens and exposes the anthers and stigma, complete autogamy is rather common.
(C) In autogamy pollination is achieved with in the same flower.
(D) Cleistogamous flowers of Commelina produce assured seed-set even in the absence of pollinators.

Which of the following set of statement is correct.
(1) A \& B
(2) B \& C
(3) A \& C
(4) $\mathrm{C} \& \mathrm{D}$
145.

Read the given examples -
Viola, Oxalis, Commelina, Pisum, Helianthus, Hydrilla, Vallisneria, Water lily, Zostera.

How many above plant/s is/are exclusively show pollination by marine water?
(1) Four
(2) Three
(3) Two
(4) Only one
146. Monoecious plants like castor and maize prevents.
(1) Both autogamy and geitonogamy
(2) Geitonogamy but not autogamy
(3) Autogamy but not geitonoga my
(4) Neither aut ogamy nor ge itonogamy
147. In a typical angios perm, mature male gameto phyte is
(1) One celled
(2) Two celled
(3) Three celled
(4) Four celled
148. Seeds are endospermic in :
(1) Pea, wheat, rice
(2) $\mathrm{Maize}^{\text {, rice }}$, be an
(3) Groundnut, wheat, castor
(4) Rice, maize, whe at
149. Incorrect combination with respect to post fertilization events -
(1) Outer integument \rightarrow Testa
(2) Ovary wall \rightarrow Pericarp
(3) Ovule \rightarrow Seed
(4) Endosperm \rightarrow Embryosac
150. How many male gametes are produced after one meiosis in microspore mother in a typical angiospermic plant?
(1) One
(2) Two
(3) Four
(4) Eight

Topic: Human Reproduction, Reproductive Health

SECTION-A (ZOOLOGY)

151. Seminiferous tubule is lined on its inside by :
(1) Male germ cell
(2) Leydig cell
(3) Simple squamous epithelial cell
(4) Pseudo-stratified columnar epithelium
152. Testis descend into scrotum for:
(1) Maintain the body temperature
(2) Production of seminal plasma
(3) Production of sperm
(4) Development of secondary sex character
153. Identify the A, B and C in given figure :

(1) A-Seminal vesicle, B-Prostate, C-Bulbourithral gland
(2) A-Prostate, B-Seminal vesicle, C-Cowpers gland
(3) A-Cowpers, B-Prostate, C-Seminal vesicle
(4) A-seminal vesicle, B-Cowpers, C-Prostate
154. A hormone which stimulate the secret cell to secret some factor which help in process of spermiogenesis :
(1) LH
(2) GnRh
(3) FSH
(4) Androgen
155. Which one of the following structure provide the nutrition to developing sperm :
(1) Leydig cell
(2) Ootid
(3) Primary spermatocyte
(4) Sertoli cell
156. Which one of the following structure is not include in male sex accessory duct :
(1) Rete testis
(2) Vasa efferentia
(3) Epi didymis
(4) Seminiferous tubule
157. Primary sex organ of male is :
(1) Penis
(2) Testis
(3) Se minalvesicle
(4) Vas-deferen s
158. How many of the above technique are include in in-vivo fertilization.
Z.I.F.T., IU T, ICSI, AI, GIFT, Test-tube technique.
(1) Two
(2) Three
(3) Four
(4) One
159. India is the first country in world to initiate family planning programme in \qquad .
(1) 1977
(2) 1951
(3) 1941
(4) 1971
160. In ZI.F.T. zygote transfer into the fallo pi on tube upto \qquad .
(1) 8 cell stage
(2) 16 cell stage
(3) 32 cell stage
(4) 64 cell stage
161. Government of India legalised MTP in \qquad year. With some strict conditions to avoid misuse :
(1) 1951
(2) 1977
(3) 1971
(4) 1947
162. The medical termination of pregnancy (Amendment) Act, enacted at year \qquad .
(1) 2017
(2) 1971
(3) 1977
(4) 2018
163. How many of the following statements are correct for surgical method/steril isation :
(A) Reversibility is very high
(B) In vesectomy cut the vasa-efferentia so sperm ejaculation does not occur
(C) It block the gamete transport
(D) It is also know as terminal method of contraception
(1) A and B
(2) B and C
(3) B and D
(4) C and D
164. Which one of the following property are not related to Saheli pill.
(1) Weekly oral pill
(2) Anti-oestrogenic
(3) Steroidal pill
(4) Prevent implantation
165. In which In-vitro technique zygote more then 8 blastomeres are transfer into the uterus.
(1) Z.I.F.T.
(2) I.U.T.
(3) G.I.F.T.
(4) A.I.
166. Given below are two statements:

Statement-I :- Oral contraceptive pills contain small doses of either progesterone or progesterone oestrogen combination.
Statement-II :- Oral pills are vary effective with lesser side effects and high contraceptive value. In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Both statement-I and statement-II are incorrect
(2) Statement-I is correct but statement-II is incorrect
(3) Statement-I is incorrect but statement-II is correct
(4) Both statement-I and statement-II are correct
167. Which of the following feature not related to M.T.P. [Medical Termination of pregnancy]
(1) It is safe during $\mathrm{I}^{\text {st }}$ trimester
(2) Govt. of India legalised MTP in 1971
(3) Nearly 45-50 million MTP are performed in a year all over the world
(4) If the pregnancy has lasted more than 12 week but fewer than 24 week one registered medical practitioner must be of the opinion
168. Which one of the following gland present only in male :-
(1) Pituitary gland
(2) Sebaceous gland
(3) Mammary gland
(4) Bulbourethral gland
169. Testis communicates with Abdominal cavity through -
(1) Inguinal canal
(2) Epididymis
(3) Spermatic cord
(4) Vasa efferentia
170. Statement-I :- ZIFT-The zygote or early embryo (upto 8 Blastomere) could be transferred into the fallopian tube.
Statement-II :- IUT-More then 8 blastomeres sta ge could be transferred into the fal lopian tube.
(1) Both Statement I and Statement II are incorrect
(2) StatementI is correct but Statement II isincorrect
(3) Statement I is incorrect but Statement II is correct
(4) Both Statement I and Statement II are correct
171. Which of the following is not considered as se condary se xual character infemales?
(1) Breasts
(2) $\mathrm{Br}_{\text {oad }}$ pelvis 2
(3) Pubic hairs
(4) Vagina
172. The last part of the oviduct, isthmus has a
\qquad lumen and joins the \qquad .
(1) Narrow, Cerevics
(2) Narrow, Uterus
(3) Broad, Cerevics
(4) Broad, Uterus
173. Spermatogenesis starts at the age of puberty due to signific ant increase in the secretion of :
(1) F SH and LH
(2) FSH and TSH
(3) Estrogen and LH
(4) Estrogen and TSH
174. Acrosomal enzymes help in \qquad .
(1) Movement of sperm
(2) Respiration of sperm
(3) Fertilization of ovum
(4) Nutrition of sperm
175. Tertiary follicle is characterised by a fluid filled cavity calledas :
(1) Centrum
(2) Antrum
(3) Se condry oocyte
(4) Corpus luteum
176. In first meiotic division during oogenesis cytoplasm of primary oocyte is :
(1) Divided equally
(2) Divides unequally
(3) Not divided
(4) Degenerated
177. Oogonia are formed in female ovary :
(1) At the time of puberty
(2) After the birth
(3) After the puberty
(4) Before the birth
178. How many chromosomes will be there in a human zygote?
(1) 23
(2) 46
(3) 92
(4) 48
179. Cleavage is a special type of division which occurs in :
(1) Sperm
(2) Ovum
(3) Zygote
(4) Foetus
180. Which of the following is correct?
(1) The embryo with $4-8$ blastomeres is called morula
(2) The embryo with 8-16 blastomeres is called morula
(3) The embryo with $16-32$ blastomeres is called morula
(4) The embryo with $32-64$ blastomeres is called morula
181. Which of the following extra embryonic membrane prevents the dessication of embryo :
(1) Chorion
(2) Amnion
(3) Allantois
(4) Yolk sac
182. Which of the following hormones are not produced by placenta?
(1) hCG
(2) hPL
(3) hGH
(4) Estrogen
183. By the end of \qquad weeks during pregnancy, the body is covered with fine hairs and eye lids separate :
(1) 6
(2) 8
(3) 12
(4) 24
184. Signals from fully developed foetus and placenta induce mild uterine contractions called :
(1) Withdrawal Reflex
(2) Foetal ejection reflex
(3) Cranial reflex
(4) Spinal reflex
185. \qquad acts on the uterine muscles and cause stronger uterine contractions :
(1) Relaxin
(2) hCG
(3) Progesteron
(4) Oxytocin

SECTION-B (ZOOLOGY)

186. Read the following statements carefully and choose the incorrect statements :
(i) Liberation of sperm from sertoli cells of seminiferous tubule is called spermiation.
(ii) Sertoli cell synthesize and secrete tisticular hormone called Androgen.
(iii) Secretions of bulbourithral gland lubricate the penis.
(iv) Glans penis is covered by a loose fold of skin called hymen.
(1) (i) and (ii)
(2) (i) and (iv)
(3) (iii) and (iv)
(4) (ii) and (iv)
187. Match the column-I with column-II

Column-I		Column-II	
(i)	Leydig cell	(a)	Provide nutrition to germ cell
(ii)	Seminal vesicle	(b)	Secret Androgen
(iii)	Bulbourithral gland	(c)	Secret fructose
(iv)	Sertoli cell	(d)	Release lubricants

(1) i-a, ii-b, iii-c, iv-d
(2) i-b, ii-c, iii-d, iv-a
(3) i-b, ii-c, iii-c, iv-d
(4) i-c, ii-b, iii-a, iv-d
188. Ovum and sperm are prevented from physically meeting by :
(1) MTP
(2) Diaphragm
(3) Pills
(4) Injection-DMPA
189. Read the following statements carefully and choose the incorrect one.
(1) Total number of seminiferous tubules in each testis is about $750-1000$.
(2) Functional maturation of sperm takes place in epididymis.
(3) Each testicular lobule have $1-3$ seminiferous tubules.
(4) Seminal vesicle contribute 30% part of semen.
190. Match the column I with column II

	Column-I		Column-II
(I)	Cu-releasing IUD	(A)	Lippes lo op
(II)	horm one releasing IUD	(B)	LNG-20
(III)	Non-Medicated IUD	(C)	Multiload-375
(IV)	Pills	(D)	Saheli

(1) I-A, II-B, III-C, IV-D (2) I-B, II-C, III-A, IV-D
(3) I-C, II-B, III-A, IV-D (4) I-C, II-A, III-B, IV-D
191. Given below are two statements : one is labelled as Assertion A and the other is labelled as a Reason R
Assertion (A) :- Cu releasing IUD prevent the fertilization.
Reason (\mathbf{R}):- Cu releasing IUD suppress the sperm motility and the fertilization capacity of sperm
In the light of the above statements, choose the correct answer from the option given below
(1) Both A and R are true but R is not the correct explanation of A
(2) A is true but R is false
(3) A is false but R is true
(4) Both A and R are true and R is the correct explanation of A
192. Two state ments given below :-

Statement-I :- Due to very low sperm count in the ejaculation could be corrected by artificial insemination (AI).
Statement-II :- Artificial insemination (AI) is the example of in-vivo ferti lization.

Choose the most appropriate answer from the option give below
(1) Both statement I and statement II are incorrect
(2) Statement I is correct but statement II is incorrect
(3) StatementI is incorrect but statement II iscorrect
(4) Both statement I a nd state ment II correct
193. Which one of the following method are most widely accepted method of contraception in India :
(1) I.U.D.
(2) Condom
(3) Surgical Method
(4) Periodic abstinence
194. Read the following statement carefully and choose the incorrect statements :
(A) Sterilisation method stop the gamet formation.
(B) Hormone releasing IUD make the uterus unsuitable for implantation.
(C) Multiload-375 is the example of Cu releasing IUD.
(D) Lactation amnenorrhoea effective upto 6 month after pregnancy.
(1) A and B
(2) B and C
(3) A and D
(4) C and D
195. Statement-I :- Hormone releasing IUD make the uterus unsuitable for implantation.

Statement-II :- Progestesert and LNG-20 are the example of hormone releasing IUD.
(1) Both Statement I and Statement II are incorrect
(2) Statement I is correct but Statement II is incorrect
(3) Statement I is incorrect but Statement II is correct
(4) Both Statement I and Statement II are correct
196. Which of the following statements are incorrect?
(1) A functional mammary gland is a characteristic of all female mammals.
(2) Mammary glands are paired structures.
(3) Mammary glands contain glandular tissue and variable amount of fats.
(4) The alveoli open into lactiferous ducts.
197. Which of the following can not be the reason for lack of menstruation?
(1) Stress
(2) Poor health
(3) Pregnancy
(4) Poor hygine
198. Identi fy the label D in the given diagram :

(1) Sperm
(2) Zona pellucida
(3) Corona radiata
(4) Perivitalline space
199. Assertion (A) :- Mammary glands start producing milk tow ards the end of pregnancy.
Reason (R) :- Milk produced during initial few days of lactation is called colostrum.
(1) A is correct and R is wrong
(2) A is wrong and R is correct
(3) Both A and R are correct
(4) Both A and R are correct and R is correct explaination of A
200. Match the column

(A)	Estrogen	(i)	Follicular development
(B)	Relaxin	(ii)	Uterine contraction
(C)	Oxytoc in	(iii)	Dialates cervix
(D)	FSH	(iv)	Proliferation Endometrium

(1) A-(i), B-(ii), C-(iii), D-(iv)
(2) A-(ii), B-(i), C-(iv), D-(iii)
(3) A-(iii), B-(iv), C-(i), D-(ii)
(4) A-(iv), B-(iii), C-(ii), D-(i)

